
Theoret. Chim. Ac*a (Berl.) 37, 47--85 {1975) 
@ by Springer-Verlag 1975 

Inner-Shell Eigenvalues 
from Valence Orbital only Calculations 

A b a  H a r t m a n  and Michae l  C. Zerner  

Department of Chemistry, University of Guelph, Guelph, Ontario, Canada 

Received June 19, 1974/August 5, 1974 

Methods are examined for calculating Inner-shell Eigenvalues from molecular orbital models 
which do not explicitly include core basis functions. If the "valence-orbital only" calculation is a good 
one, a rather straightforward method can be used to obtain core eigenvalues with arms error of 
• a.u. compared with ab-initio values. Even simpler methods can be used to reproduce trends 
among core eigenvalues. The AAMOM valence technique, and to a lesser extent, the INDO model, 
can be used to yield core eigenvalues for orbitals centered on carbon and nitrogen: for oxygen the 
agreement is poorer. Extended Hiickel or lterative Extended Hiickel methods cannot be used for this 
purpose with any degree of confidence, 

Eigenvalues from ab-initio studies or from AAMOM and INDO can be used in assigning ioniza- 
tion pr~)cesses (XPS) from orbitats �91 on carboi~ ~nd nitragen: ionization processes from 
oxygen orbitals are not well treated. An attempt is made to explain this behaviour. 
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1. Introduction 

The great  ma jo r i t y  of q u a n t u m  mechanica l  ca lcula t ions  pe r fo rmed  on the 
larger  molecules  of  cur rent  exper imenta l  interest  are  of a semi-empir ica l  or  
a p p r o x i m a t e  nature.  Such ca lcula t ions  have p roven  of  great  value in es t imat ing  
features of the molecu la r  orb i ta l  s t ruc ture :  o rb i ta l  symmetr ies ,  gross  charge  
d is t r ibut ion ,  spectra,  mo lecu la r  conformat ion ,  and  even es t imates  of heats  of  
format ion ,  etc. M o s t  of  these ca lcu la t ions  a re  of  "valence-orbi ta l  on ly"  type, 
i nco rpo ra t ing  the m a j o r  influences of  the core  or  inner  sheIl t h rough  pa ramet r i za -  
t ion or  t h rough  pseudo-po ten t i a l s  I t ] .  

M o r e  recently,  however,  a great  deal  of  interest  has been focused specifically 
on the inner  shell, as ion iza t ion  processes  f rom this shell have become accessible 
t h rough  the general  t echnique  of Elec t ron  Spec t roscopy  for Chemica l  Analysis ,  
ESCA [-2, 3]. Techniques  such as X-ray  Pho toe lec t ron  Spec t roscopy  (XPS) and  
X-ray  UV Spec t roscopy  (XUV) have d e m o n s t r a t e d  tha t  core  ion iza t ion  processes  
can be measu red  with sufficient accuracy  to dis t inguish a tomic  envi ronment ,  
to facil i tate qua l i ta t ive  and  quant i t a t ive  chemical  analysis ,  as well as showing 
s t rong p romise  in s tudying  surface p h e n o m e n a  [2]. 

F r o m  the q u a n t u m  mechanica l  s t andpo in t  two app roaches  have d o m i n a t e d  
in exp la in ing  these ct~emica! shifts; i.e. ~he st~ifr of  ioniza t ion  e~ergy of  ~he core  
e lectrons in molecules  relat ive to s t anda rd  values, or  to one ano the r :  
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1. Koopmans' approximation [-4]: The inner shell molecular orbital eigen- 
values are compared with the negative of the observed ionization energies. 

2. AE(SCF): This method relies on the difference of energies calculated for 
the atom or molecule after and before the ionization process. Most often the 
calculations are of the Hartree-Fock Self Consistent Field (SCF) type, although 
they need not be. As a separate calculation is required for the neutral species and 
each ionized state (center), this method is considerably more difficult to implement 
than trusting Koopmans' Approximation. 

We wish here to first focus our attention on the calculation of core eigen- 
values, e ..... from "valence orbital only" calculations. This is of interest for its 
own sake to complete the molecular orbital eigenvalue spectrum. We wilt then 
compare the calculated core eigenvalues with experimental ionization potentials. 
In developing methods for calculating inner shell eigenvalues we shall examine 
each step in the approximations used in deriving the popular "charge potential 
model" of Siegbahn and co-workers [-2, 3] used to explain inner shell ionization. 
We assume for the moment that the eigenvalues of a "good" molecular orbital 
calculation reflect the ionization energies obtained experimentally. The question 
then arises of how the popular valence shell calculations (one which, by construc- 
tion, does not include the core explicitly) can be made to successfully yield core 
eigenvalues. 

We take the following approach: Given an accurate "valence-orbital only" 
calculation, what is the minimum amount of work required to accurately reproduce 
inner shell eigenvalues? For this purpose we examine model ab-initio calculations 

"Best theory" 
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Fig. I. Approximat ions  consistent with current semi-empirical molecular orbital theories 
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and attempt to match the core eigenvalues of these calculations from properties 
of the valence shell only. The simplest theory that accomplished this compromise 
between ease and accuracy we call our "best theory". Any valence shell only 
calculation which reflects accurately the ab-initio density should yield identical 
inner shell eigenvalues using this theory. Very often, however, the Fock-Dirac 
density calculated from approximate methods relates to basis sets that are un- 
known other than in their effect in the evaluation of integrals. For  this reason 
we relax certain aspects of our "best theory" consistent with the integral ap- 
proximations in the more popular methods. Thus we here examine two philoso- 
phies: the first one is that we do not care where or how the Fock-Dirac density 
is obtained, but once obtained it accurately reflects an ab-initio calculation with 
either a Slater Type Orbital (STO) basis [5] or a symmetrically orthogonalized 
L6wdin Type Orbital (LTO) basis [6]. Since the transformation between these 
two bases is known we insist that the consistent application of our "best theory" 
yield identical results for the same calculation in either basis. This places restric- 
tions on the derivation of this formulation. The second philosophy examined 
assumes that the basis of the approximate calculation is neither STO nor LTO, 
but is defined by the details of the molecular orbital calculation itself. We then 
make approximations on the "best theory" that are consistent with the approxima- 
tions of the calculation. Figure 1 summarizes this approach. 

2. Method of Calculation 

2.1. The "Best Theory" 

Let ~,/3, ~,, ... denote core type Atomic Orbitals (AO's), i,j, k,. . .  valence AO's 
and #, v, 2 . . . .  either. An examination of minimum basis set STO calculations 
indicates that core and valence AO's cannot be considered as two orthogonal and 
non-interacting sets. However, we note that 

~ ~ F~ (1) 

where F is the Fock energy matrix. This suggests a basis transformation in which 
the core orbitals remain as they were, but the valence orbitals are Schmidt ortho- 
gonalized to all core AO's 1. 

A~= = ( i l~)  = j" dzziZ=. 

With this transformation, the two sets (valence and core) are orthogonal, and 
have been demonstrated to be nearly non-interacting [1]. 

Assuming that all valence orbitals are orthogonalized to all core orbitals, 
we derive our "best theory" utilizing the following approximations. 

1 Equation (1) also suggests that second order effects in a perturbation treatment will be of 
minor importance. 
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Table 1. Atomic parameters 

Li Be B C N O F 

g 0.9980 0.9974 0.9961 0.9952 0.9947 0.9942 0.9939 
( I s ' 2 s ' / l s ' 2 s ' )  ~ 0.0131 0.0238 0.0355 0.0468 0.0584 0.0703 0.0820 a.u. 
( l s ' 2 p ' / l s ' 2 p ' )  ~ 0.0045 0.0085 0.0129 0.0173 0.0218 0.0264 0.0310 a.u. 

These values are obtained by orthogonalizing the 2s' AO to the is, and for STO's  with exponents 
obtained by Slater's rule. 

(1) Coulomb repulsion integrals between core and valence orbitals are given 
by t 

(c~e[ij) = j" Z,(1) Z,(1) ~ Zi(2) ;gj(2) dz(1) dz(2) 
' 1 2  

(3) 
=I) / i (2)~-AZj(2)dr  2 -  ~-~-A j e t A .  

This is a fairly accurate approximation, the error being of the order e-2Q, 
= 1/2((c + ~-~), (c and (-~ being the exponent of the core orbital and the average 

of the two valence orbitals respectively. 
(2) a) The charge distribution Z'i(1)Z;(1)dr(l) where it appears in multi- 

center integrals is approximated by zero. The reason for the core orthogonalization 
is to make this nearly so. Where this distribution occurs in one center exchange 
integrals, the value of the integral will be set to the free atom value. Some of these 
integrals are tabulated in Table 1. 

b) The charge distribution 

zi(2) z)(1) d~(2) ~ gij z~(2) z~(1) d~(1) 

where it occurs in integrals. When gii  = 2, this is a consequence of Approximation 
(2a). We will set all gi2 = 2 except where it occurs in one center integrals. For one 
center integrals we force the approximation to be nearly so by adjusting gu 
accordingly for isolated atoms, 

gu = (aa ] i' i ' ) /(aa ] ii) ~, (~a ] i' i')/(i ] l / R  ] i) 

= ni(o:a ] i ' i ' ) / (  i . 

These values appear in Table 1, and do not differ greatly from unity. 
c) Diagonal elements of the density matrix for core elements are set equal 

to two 
P ~ = 2 .  

This is a consequence of the core orthogonalization, and is examined in Ref. [2]. 
(3) Multicenter integrals which involve differential overlap 

different core orbitals we set to zero, 
c ~ 6 A  

Z~(1) Z~(1) dz l  = 6AB Z~(1) zp(l) dz l  fl ~ B .  

;~ and Z~ are so contracted, that this is very nearly so. 

between two 



Inner-Shell Eigenvalues from Valence Calculations 51 

(4) The nuclear attraction integrals for core orbitals are approximated by 

(c~[I/RBIC~)~ 1/RAB ~ A * B .  

The error is of the order of exp(-20) /R (where Q = (~R), and is quite small as (~ 
is large. 

These approximations yield for closed shell molecules in which Z~ is a ls 
orbital, 

e~ ~ F~ = (~ ' l -  1/2 V 2 - ZA/RAI~') + Y', P;z [(a'2'l ~'=') - 1/2(a'~'lX'a')] 
~,a (4) 

- ~ .  ( a ' IZB/RBI~ ' ) ,  
B:CA 

e ~ - - Z r  f ,  Z~/RAB--1/2 ~ F',(a'i'la'i' ) 
B:~A i ~ A  

(5) 

a 

Z A is the atomic number of atom A, while Z~ are the number of valence electrons 
of atom A. Equation (5) is not sensitive to reasonable choices of r We set 
~ = Z -  0.3 for the first row atoms of this study. Assuming a minimum basis set, 
Eq. (5) becomes 

e ~ - ~ -  -Zr (6) 

with n, and np the number of s and p electrons in the valence shell respectively�9 
The results of Eq. (6) appear as row 2 in Table 2 where they are compared with 

eigenvalues obtained from atomic calculations near the Hartree-Fock limit [7]. 
When compared with minimum basis set calculations using similar exponents, 
Eq. (6) is nearly exact. 

For second row elements, Eq. (4) becomes 
r 

,,~ 1 _ ~ 1 Z + 0 . 6 2 5 ( 1 _  ~Is~ T 
B:#A 

+ ~ Pijgij(il I/RAIj), 
t , J  

( z -  2) 
~ z ~  6 2 +2"3021(2-  ~ 

B:~A 

+ ~ Pi~gu(il 1/Ra IY')- A2~2~e,~, 
l , J  

(2 r ( Z -  2) 
ezP ~ 2 5 + 2"3924(2 - ~ 

B=bA 

+ Y, Pi3a,j(il i/R lj), 

2 Aa~e, ----- 3/4(1 + z) 3 (1 - z) 5 

Z~/RAB-- 1/2 ~ P/'i(ls', i'l ls', i') (7a) 
i e A  

Z~/RAB-- 1/2 ~ F[,(2s', i'12s' , i') 
i ~ A  

Z~/RAB-- 1/2 ~ F[i(2p' , i'12p', i') 
l e A  

(7b) 

(7c) 

- + 
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Tab le  2. Core  ion iza t ion  potentials ,  first r o w  a t o m s  (a.u.) 

Li Be B C N O F 

el~ a (H.F.) - 2.4777 - 4.7327 - 7.6953 - 11.3255 - 15.6290 - 20.6686 - 26.3836 
Eq. (6) b - 2 . 4 5 7 9  - 4 . 7 1 7 6  - 7 . 6 7 9 8  - 11.3041 - 15.5956 - 2 0 . 6 1 8 3  - 2 6 . 3 0 7 7  

Eq. (7) - 2 . 3 6 0  - 4 . 6 9 1  - 7 . 6 8 9  - 11.353 - 15.684 - 2 0 . 6 8 0  - 2 6 . 3 4 3  

ESCA ~ 2.02 4.08 6.91 10.44 14.66 19.55 25.21 

A a 0.458 0.653 0.785 0.886 0.969 1.119 1.173 

H a r t r e e - F o c k  calcula t ions  of  a toms ,  Ref. [7].  

b Us ing  exponents  f rom Ref. [34].  

c Reference [2].  

d A _= - ESCA - els (H.F.) -= "Re laxa t ion  Energy" .  

Here we have assumed that all orbitals in the L shell can be represented by a 
single exponent, ~2. Since the core orbitals of one center interact very slightly 
with the cores of other centers, the only term we keep in the core pseudo-potential 
is the one center repulsion arising from Eq. (2), and appearing in Eq. (7b) as 
AZs2~el~. 

For atoms Eq. (7) become 

el s ~ ff~z/2 - {1 Z + 4 ~2 + 0.625 ~a + 9 (n3s ~35 + n3p ~3p)/3 - 1/2 ~ *  n, (ls, i'[ l s, i') 
i 

ees = ~2z/6- ~ 2 ( Z -  2)/2 + 2.3021 ~2 + g(n3,~3s + n3p~3p)/3 - 3/4(1 + ~)3(1 - v)5 ~15 

- 1/2 •* ni(2s' ,  i '[2s' ,  i') (8) 
i 

e2v = ~ / 2  - ~2 ( Z  - 2)/2 + 2.3924 ~2 + 9 (n3, ~3~ + n3p ~3p)/3 - 1/2 ~ *  ni (2p, i '[2p,  i ') .  
i 

In Eq. (8) Z* designates a sum over all orbitals of shells other  than the one of 
interest, and the orbitals met in the sum are orthogonalized to orbitals of all 
inner shells. 

Equations (5)-(8) involve the density of the valence shell only, and these we 
will call our "best theory". They may be implemented by considering the atomic 
orbital basis set as orthogonalized to all core orbitals (those not explicitly con- 
sidered). They are appropriate for use with STO's or LTO's and will yield the 
same results providing, of course, the corresponding Fock-Dirac density is used. 

To check the accuracy of these equations we take exact calculations, calculate 
the inner shell - -  outer shell overlap, and core orthogonalize the valence shell. 
With this new density we use Eq. (5) to calculate the inner-shell eigenvalues, 
which we compare with the values obtained from the complete calculation. The 
nuclear attraction integrals that occur in the formulae are obtained utilizing 
Stewart's [-8] three term Gaussian expansions of STO's, and evaluating the one 
center integrals analytically by 

(~11/R I~) = ~,,/n,,. 
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This has been found to give results very similar to those obtained utilizing Stewart's 
five term expansion [9], but the former is, of course, more expedient. 

A comparison of results for several molecules occurs in Table 3. The agreement 
is very satisfactory, the estimated values having a r m s  error of approximately 
0.01 a.u. 

2.1. Approximate Formulations 

We now ask if we can simplify our "best theory" using approximations common 
in semi-empirical molecular orbital theory. To check these approximations 
independent of the molecular model, we use the core orthogonalized Fock- 
Dirac density from ab-initio calculations, comparing the results with the correctly 
calculated values. That is, given a good density, is there an easier way to calculate 
the inner shell eigenvalues? 

Referring to the left hand side of Fig. 1, the Mulliken approximation [10] 
defines differential overlap as 

Z,(1) X j(1) dz = 1 Aii(Z,(1 ) zi(l ) + X j(1) X j(1)) dz. (9) 

In Method A 1, then, (Fig. 1) we utilize the Mulliken approximation, but include 
in Eq. (5) terms as 

Po la r iza t ion-  ~ P/j(i]I/RA[j) (10) 
i~j 

i,j~B 

which would normally vanish if the Mulliken scheme were used for one center 
differential overlap. We call these terms '~ as the integrals are 
multiplied by the local atomic polarization terms of the density. To maintain 
rotational invariances, all orbitals are now considered of s type, and only polariza- 
tion between orbitals of different I value are included. Method A2 differs from A1 
by dropping all polarization terms. 

If we replace the two center Coulomb integrals that occur in the new equations 
for A 2 by 

~ A  
(e~]ii)~(i[1/RAli)~ 1/RAB i~B=4=A (11) 

we arrive at Method A4. Taking differences we derive 

~;ls =-Aels=g qA + 2 qB/RAB 
n2 B~A 

qA = M A A -  Z~  

(12) 

where MAA = ~ ~ P.~Sv. -- Mulliken Atomic Population. 
/tEA v 

This is the popular charge potential model [2] utilizing Mulliken net charges 
[10]. Given in its usual form 

d els = kgqg + bg ~ qB/RAB + Ig (13) 
B~:A 
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where kA, bA, and lg are empirical factors fitted to experimental values, and are 
characteristic of Atom A [11]. Derived in this fashion, the shortcomings are those 
inherent in the Mulliken integral approximation itself, the dropped polarization 
terms, and the integral approximation of Eq. (11). The latter two approximations 
are sufficiently severe that only Method A 1 seems of interest. Numerical precision 
is bad, but most trends are maintained. 

Approximations common with LTO basis sets are introduced on the right side 
of Fig. 1. The first of these, Neglect of Differential Diatomic Overlap (NDDO) 
allows us to drop all three center integrals (as did the Mulliken approximation 
when we were using STO's). We might then drop two center polarization, as in 
Intermediate Neglect of Differential Overlap (INDO), or replace integrals between 
LTO's with the much simpler STO integrals as is done in the popular INDO 
and CNDO/2 molecular orbital methods [12]. An examination of STO and LTO 
integrals indicates that reducing the polarization term calculated with STO 
integrals and LTO densities corrects for the mixed representation. We thus reduce 
all polarization terms by 0.3 when they occur between orbitals of different I value. 

Table 3. Inner shell eigenvalues from ab-initio densities (a.u.) 

Compound Ab-initio" "Best-Theory" B2 B4 A4 

02 -ii,365 h'd -11.353 -11.322 -11.314 -11.223 

K2CO -II,357 f -11.348 -11.325 -11.296 -11.177 

CO -ii.353 d -11.354 -11.321 -11.290 -11.261 

HGN -ii.335 c -11.323 -11.331 -11.291 -11.182 

C2H2 _iL296 b , e -11.286 -11.228 -11.223 -ii. 183 

02H 4 -11.287 b~c -11.282 -11.209 -11.205 -11.096 

C2H 6 -ii.279 b'c -11.279 -11.184 -11.182 -11.063 

CH 4 -ii.271 c -11.266 -11.164 -11.164 -11.050 

N 2 -15,721 b'c -15.728 -15.689 -15.644 -15.509 

NO -15.650 e -15.649 -15.632 -15.604 -15.536 

HCN -15.647 c -15.655 -15.576 -15.566 -15.424 

NH 3 -15.523 c -15.520 -15.432 -15.432 -15,303 

CO -20,706 d -20.715 -20,741 -20.686 -20.406 

NO -20.623 e -20.650 -20.633 -20.596 -20.440 

H2CO -20.589 f -20.600 -20.547 -20.538 -20.385 ~ 

~g 1.000 0.993 0.973 0.984 0.727 

o -- 0.010 0.061 0.072 0.192 

a All calculations are minimum basis set. 
b Average of the core eigenvalues, none differing by more than 0.002 a.u.  

c Refe rence  [36] .  
d Refe rence  [37] .  

~ Refe rence  [38] .  
f Refe rence  [39] .  
g L i n e a r  correIation factor, R = ( n c R  c + n~R N + noRo)/(nc + n~ + no). n c = n u m b e r  of carbon atoms, 

R c the linear correlation factor for carbon centers, etc. R o is usually much lower than R c and R~.  
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As indicated in Fig. 1, we have tried both orders of approximation, dropping 
polarization being much more severe than adopting the mixed representation. 

If we now make the integral approximation Eq. (11) we derive Eq. (12) again, 
the charge potential model, but with the charges now calculated from the diagonal 
terms of the LTO density. To maintain rotational invariances in B 5, all integrals 
are evaluated assuming s type AO's. Method B3 is not invariant to molecular 
orientation, but the effect of this invariance is not large. 

The approximate methods, where they are of sufficient numerical interest, 
are included in Table 3. B2 and B4 show systematic errors: differences between 
eigenvalues for similar atoms are generally estimated 60% too great. As B5 is 
considerably more accurate than B 3, we surmise a cancellation of some of the 
errors introduced by dropping polarization by replacing LTO with STO integrals. 
The charge potential model, neither with Mulliken (A4) nor LTO (B6) charges, 
reliably reproduces inner shell eigenvalues. We include the better of these, A4, 
for comparison. 

3. "Valence-Orbital only"-Calculations 

In the previous section we have examined methods of obtaining inner shell 
eigenvalues when the valence density was accurate and the corresponding inner 
shell eigenvalues for these densities were already known. The more germane 
problem is to calculate these eigenvalues from approximate calculations in which 
explicit consideration of the core is lacking, and the accuracy of the density 
uncertain. 

We fools our attention on the following models: 
a) INDO/1 �9 Intermediate Neglect of Differential Overlap, assumedly with a 

near LTO basis and with well defined integral approximation. INDO/1 differs 
from the INDO method of Pople and coworkers [12c] in obtaining one center 
core integrals from ionization potentials, and not ionization potentials and electron 
affinities [13] 2 

b) EH and IEH: Extended Htickel [14] and Iterative Extended Hiickel [ 15-17] 
methods as example of simple calculations with an STO basis. 

c) AAMOM: An Approximate Molecular Orbital Method developed by one 
of us (M.C.Z.) assumedly with a core orthogonalized set of STO's and with well 
defined integral approximations [18]. AAMOM is constructed in a fashion 
similar to the method we here outline as B 2. Briefly, the two electron part of the 
Fock matrix is evaluated utilizing the LTO density and integrals over STO-AO's. 
The two electron matrix is then simplified by neglecting differential diatomic 
overlap, but corrects for missing three center terms through a model potential. 

Part of the results of this investigation are given in Tables 4 and 5 where we 
compare estimated core eigenvalues and linear correlation factors Ri, from 
attempting simple linear fits of the form 

e ( a b - i n i t i o )  = m i e (estimated) + a ~ 

where the subscript i refers to different type atoms. When the correlation is near 
unity, the estimate shows predictive promise. When the factor is much less than 

a Preliminary calculation with INDO/2 have indicated INDO/1 more adequate. 
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Table 4. Core eigenvalues from approximate valence methods (a.u.) 

Compound Ab- ln i t i o  a INDO/1 (B 6) AAMOM (B 2) 

CO 2 -ii.534 f -ii.438 -ii.491 

C 2 -Ii.365 b -i1.223 -ii.324 

H2CO -ii.357 e -11.287 -ii.305 

CO -ii.353 b -11.225 -11.340 

HCN -ii.335 c -11.227 -11.284 

H3~CN (-ii.308) d -ii.216 -11.279 

H3CCN (-ii.300) d -11.231 -11.289 

C2H 2 -Ii.296 c -11.165 -11.229 

C2H 4 -iI.287 c -11.170 -11.222 

C2H 6 -ii.279 c -11.170 -11.211 

CII 4 -Ii.271 c -ii.144 -ii.195 

g~0 (-15.840) g -15.797 -15.877 

N 2 ~15.721 b -15.509 -15.682 

N'NO (-15.695) g -15.488 -15.603 

HCN -15.647 c -15.423 -15~591 

H3CCN (-15.597) d -15.372 -15.543 

NI 3 -15.523 c -15.326 -15.438 

00*0 -20.~34 h -20.710 -20.845 

00 -20.706 b -20.475 -20.667 

NNO (-20.651) g -20.288 -20.546 

F20 -20.618 h -20.598 -20.640 

~CO -20.589 e -20.330 -20.573 

CO 2 -20.584 f -20.344 -20.578 

}120 -20.556 i -20.275 -20.420 

000* -20.547 h -20.301 -20.511 

R j (calc) 1,000 0.943 0.974 

o k - -  0.17 0.06 

o I (fit) -- 0.04 0.02 

" Values in parenthesis are not from minimum basis set calculations. 
Reference [37]. c Reference [36]. d Reference [40]. * Reference [39]. 

r Reference [41]. g Reference [42]. h Reference [43]. i Reference [44]. 
J See Footnote g), Table 3. 

The standard deviation between ab-ini t io  and estimated. 
The standard deviation obtained using the least squared linear relationship between ab-initio and 
estimated. 

~ 0 . 9 ,  w e  do  n o t  cons ider  the  fit very  good .  N o t  to be m i s l e d  by  such  an analys i s ,  
w e  h a v e  succes s ive l y  d r o p p e d  e n d  p o i n t s  f r o m  the  data  to insure  no  great  deter iora-  
t ion  in  R i. 

A n  e x a m i n a t i o n  o f  I N D O  results  ind ica te s  that  M e t h o d s  B 6  a n d  B 5  are best  
in  r e p r o d u c i n g  core e i g e n v a l u e  trends  (R = 0.94). T h e s e  m e t h o d s  are variants  
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Tab le  5. Aden ine  e igenvalues  (a.u.) 

57 

A t o m  ~ Ab:Initio A A M O M  I N D O / 1  E H  E S C A  ~ 

"Best"  B2 B6 A1 

N(9)  - 15.760 b - 15.897 c - 15.780 - 15.711 - 15.502 - 15.687 - 14.733 
N(10)  - 15.654 - 15.792 - 15.663 - 15.591 - 15.404 - 15.408 - 14.686 
N(8) - 15.650 - 15.791 - 15.595 - 15.513 [ -  15.338] g [ -  15.016] g - 14.682 
N(7)  - 1 5 . 6 4 0  - 1 5 . 7 7 4  - 1 5 . 5 7 2  - 1 5 . 4 8 8  / -  15.346~ ~ -  15.078~ - 1 4 . 6 6 7  
N(6) - 15.635 - 15.771 - 15.561 - t5.475 -- 15.34t t - 15.056J - 14.649 
range 0.125 0.126 0.219 0.236 0.164 0.671 0.084 

C(4) - 1 1 . 5 3 4  - 1 1 . 5 5 6  - 1 1 . 4 3 0  - 1 1 . 3 5 8  - 1 1 . 2 8 7  [ -  11.554] g - 1 0 . 5 7 7  
C(2) - 1 1 . 5 1 1  - 1 1 . 5 3 7  - 1 1 . 3 7 5  - 1 1 . 3 2 2  - 1 1 . 2 7 5  ~ -  11.593~ - 1 0 . 5 3 3  
C(5) - 11 .491  - 1 1 . 5 1 7  ~ -  11.350~ g - 1 1 . 3 0 3  - 1 1 . 2 5 3  I , -  11.632J - 1 0 . 5 1 8  
C(1) - 1 1 . 4 8 2  - 1 1 . 5 0 3  ( -  11.360J - 1 1 . 2 8 8  - 1 1 . 2 3 9  - 1 1 . 5 0 7  - 1 0 . 5 0 0  
C (3) - 11.437 - 11.463 - 11.247 - 11.224 - 11.209 -- 11.465 - 10.463 
range 0.097 0.093 0.183 0.134 .078 0.167 0.114 
Rcajc d 1.000 0.998 0.973 0.986 0.970 0.753 0.961 
Rexp d 0.961 0.965 0.965 f 0.980 0.944 f 0.722 f 1.000 

a A t o m  n u m b e r i n g  as in Fig. 2. 
b Clement i ,  E. [25]. 
c Pul lman,  A. [45]. 

Cor re la t ion  factor, Roaj, re la t ive to ca lcu la t ion  A, R = (R c + RN)/2 where  the C and  N eigenvalues  
are  cor re la ted  separately.  

e Reference [20]. 

f F i t t ed  as if ab-initio as s ignmen t  of spec t rum is correct.  
g Bracke ts  denote  reversals  f rom ab-initio ordering.  

of the charge potential model with symmetrically orthogonalized charges (LTO). 
Neither of these methods are qualitatively correct when applied to the two centers 
of a diatomic molecule. Because of charge neutrality these methods predict that 
the eigenvalue associated with one center will shift up while the other shifts down 
relative to atomic values, and that homonuclear diatomics will show no shift at 
all. Both of these conclusions have been shown by experiment and by calculation 
to be incorrect. The more sophisticated models that we have tried, and that are 
qualitatively correct for diatomics, show a very poor overall predictive power. 
That our :'best theory" is rather unsuccessful (R c = 0.71, down from 0.94 upon 
dropping the extreme carbon of CO2) sheds some doubt on the LTO basis assumed 
for INDO/1; that B5 shows success is some indication that a consistent treatment 
of integrals does give definition to the unspecified basis. 

We have not been able to find any theory which accurately extracts inner- 
shell eigenvalues from the Extended Hiickel model. (See, however, Schwartz, 
Switalski, and Stronski [-11] who employ an empirical method.) The iterative 
procedure does not seem to improve these results: carbon deteriorates, showing 
little predictive strength, while oxygen improves. For non-polar molecules as, 
for example, the series C H 4 ,  C 2 H 2 ,  C 2 H 4 ,  C 2 H 6 ,  C z ,  both EH and IEH work 
reasonably well with the A 1 method. 

Inner-shell eigenvalues seem best extracted from AAMOM. Although the 
"Best Theory" gives absolute values in good agreement with core-eigenvalues 
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N(8) .~j..~4) 

N(7) 

Fig. 2. Adenine 

calculated directly from ab-initio studies, methods B2 (R = 0.97) and B4 (R = 0.95) 
with integral approximations consistent with AAMOM itself have the better 
correlations. Method A1 also reproduces eigenvalue trends (R = 0.93), whereas 
lower level approximations are not as reliable. 

Experimentally there is, of course, no difficulty in separating ionization 
processes for different molecules. Since we wish to compare inner-shell eigen- 
values with experimental ESCA, the problem of greater interest is to examine 
intramolecular shifts of atoms caused by different chemical environments. 
Several examples are given of intramolecular shifts for small molecules in Table 4. 
Table 5 presents the information for the largest molecule we have examined, 
adenine, Fig. 2. (Adenine has also been examined by Rein, Hartman, and Nir 
[-19] and Barber and Clark [-20].) 

4. Ionization Spectra (XPS) 

4.1. Comparison with Eigenvalues 

In the previous sections we have developed several theories capable of 
producing core eigenvalues from calculations which do not explicitly contain 
core electrons. Can these eigenvalues then be used to explain the corresponding 
numbers from experimental XPS? Much attention has been given to this question 
[ 11, 21-24] with the general conclusion that if the calculations are "good enough", 
they can be used to assign the experimental lines. Indeed, this has become the 
principal method of assigning the several lines that are obtained from a single 
molecular species. 

Below we briefly analyze the correlation we find between our estimated eigen- 
values and experimental XPS. For the several lines that appear for a single mole- 
cular species, we assume the order implied by the ab-initio calculations. We further 
assume as best those methods which have the greatest average linear correlation 
factor R = (ncR c + n o R  o + nNRN)/(n c + n o + nN). When correlations are similar 
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we give preference to methods which distinguish best intra-molecular ionization 
processes. 

The comparison between ab-initio eigenvalues and experiment was done for 
26 atomic centers: that between the approximate methods and experiment, for 
45 centers. 

Minimum basis set ab-initio eigenvalues correlate reasonably well with 
ionization potentials for carbon and nitrogen atoms (Rc+N = 0.92). If we include 
the ten intra-molecular ionization processes of adenine [25] assuming the ex- 
perimental order is the calculated one, the correlation is slightly improved 
(Rc+N=0.94). The eigenvalues of ab-initio minimum basis set calculations, 
however, do not appear to accurately reproduce the ionization potentials of 
processes localized to oxygen atoms (R o = 0.72). This situation is not very much 
improved when we consider calculations of near Hartree-Fock accuracy 
(R o = 0.83) (see, for example, Table 6). The molecules most out of line appear to 
be aldehydes and, for the more accurate calculations, H z O .  

Table 6. Comparison of calculated and experimental ESCA shifts (eV)a 

Compound Ab Initio 

Raw Data Fitted 

INDO/1 AAMOM Ab Initio INDO/1 

B6 A4 B2 B6 A4 

AAMOM Exp. 

B2 

CF 4 13.25 18.09 12.79 

CO 2 7.16 8.00 12.03 8.05 

CO 2.23 2.20 5.69 3.94 

HCOOH 5.63 7.35 5.25 

CH3COOH 5.63 8.22 5.09 

H2CO 2.34 2.89 5.74 2.99 

CH3CHO 3.73 5.88 3.10 

HCN 1.74 2.26 4.54 2.42 

CH3CN 2.37 4.68 2.56 

CH3CN 1.96 2.53 2,28 

CH30 ~ 2.20 2.96 2.48 

CH3CH20H 2.72 3.62 2.77 

CH3COOH 1.22 1,88 1.20 

CH3CHO 1.39 1.96 1.06 

C2H 2 0.68 0.57 1.85 0.92 

CH3CH20H 0.90 1.22 0.92 

CH 4 0.00 0.00 0.00 0.00 

C2H 4 0.44 0.71 1.33 0.73 

C2H 6 0.22 0.71 0.98 0.44 

og 

R 

Ah 

B h 

11.33 11.22 i i ,59 

7.82 6.88 7.33 7.19 

2.67 1.91 3.30 3.43 

4.82 4,32 4.63 

4,82 4.90 4.53 

2.78 3.37 3.30 2.61 

3.20 3.43 2.70 

2.15 2.00 2.54 2.06 

2.08 2,66 2.24 

1.74 1.26 1.97 

1.91 1.58 2.15 

2.34 1.96 2.43 

1.06 0.88 0.96 

1.23 0.94 0.87 

I.i0 0.54 0.81 0,68 

0.80 0.43 0.68 

0.36 0.03 -0.34 -0.14 

0.78 0.63 0.49 0.50 

0.57 0.63 0.30 0.23 

1.25 0,90 0.63 0.62 

�9 ~90 .947 .974 .975 

i. 050 .856 �9 639 .916 

.363 .028 -.337 -.140 

Ii. 00 b 

6.84 b 

5.40 b 

4.99 b 

4.70 e 

3.30 e 

3.20 e 

2.60 b 

2.10 d 

2.10 d 

i. 905 

i. 60 e 

0.70 e 

0.60 a 

0.40 c 

0.20 e 

0.00 b 

-0 ,  i0 c 

-0.20 c 
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Table 6 (continued) 

Raw Data Fitted 

Compound Ab lnitio INDO/1 AAMOM Ab Initio INDO/I  

B6 A4 B2 B6 A4 

AAMOM Exp. 

B2 

NN~ 

N 2 

HCN 

No 

CH3CN 

NH 3 

og 

A h 

B h 

7.84 6.80 5.30 

0.00 0.00 0.00 0.00 

-2.01 -2.34 -3.89 -2.48 

-0.57 0.16 -2.15 

-3.73 -4.87 -3.78 

-5.39 -4.98 -7.26 -6.64 

0.10 

-1.50 

-4.20 

3.12 2.63 2.86 2.60 e 

-1.03 -0.64 -0.38 0.00 e 

-2.27 -2.50 -1.89 -1.30 e 

-1.33 -0.56 -1.69 -1.40 e 

-3.01 -2.98 -2.69 -3.80 f 

-3.67 -4.12 -4.44 -4.38 e 

0.81 0.71 0.61 

.948 .947 .972 

.530 .480 .611 

-1.030 -.638 -.379 

00 4.08 5.44 4.08 6.72 

NNO 0.35 2.01 3.43 

CO 2 0.76 1.9 2.3 4.30 

CH3CO~H 1.77 0.98 3.10 

HCOOH 2.01 1.36 3.48 

H20 0.00 0.0O 0.00 0.00 

CH3CH20H -0.60 -0.92 0.08 

CH3OH -0.33 -0.71 0.24 

HC~OH -0.82 0.03 1.63 

CH3C~OH -1.99 -0.98 1.28 

H2CO 0.90 (1.50) (1.25) (4.16) 

CII3CHO (0.03) (0.08) (3,29) 

o g 

R 

A h 

B h 

2 . 7 7  

0.17 

-0.46 

0.25 

3.03 2.94 2.73 2.94 ~ 

0.17 1.30 0.92 1.54 b 

1.03 1.54 1.42 1.44 b 

0.97 0.53 0.76 0.74 e 

1.08 0.84 0.98 0.67 b 

-0.06 -0.25 -0.94 0.00 b 

-0.40 -0.95 -0.88 -0.66 e 

-0.23 -0.80 -0.83 -0.80 b 

-0.52 -0.25 -0.06 -0.95 b 

-1.20 -1.03 -0.23 -1.06 e 

(0.80) (0.68) (1.36) -1.66 e 

(-.06) (-.17) (0.87) -1.66 e 

0.56 0.29 0.57 

,903 .975 .902 

.572 .778 .548 

-.060 -.252 -.940 

a Reference compounds: CH 4 for carbon, N 2 for Nitrogen, H20  for oxygen. For absolute values see 
Table 4 [ INDO/1 (A4) CH 4 = 302.7 eV, N 2 = 422,0 eV, H20  = 549.9 eV]. 

b Reference [47]. 
c Reference [46]. 
a Reference [48]. 
e Reference [3]. 

Reference [40]. 

g O- = (gca l c  - -  gexp )  

n--1 
h A (estimate)= A/(e~(approx)- ei~ B~; for carbon the reference eigenvalue is CH 4, for 

nitrogen N 2 and for oxygen H20. See a. 
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For comparison, the core-eigenvalues published by Basch and Snyder [26] 
which have the advantage of all being calculated at the same level of sophistication 
(double 0 yield a correlation for carbon of Rc = 0.98, but for oxygen, R o = 0.90. 
Here, again, both H2CO and H20 are poorly treated. Their neglect in the "fit" 
brings the correlation between calculation and experiment for oxygen to Ro = 0.95. 
We have found the aldehyde oxygens poorly treated in nearly every model 
examined. For this reason, the aldehyde oxygens have been removed from the 
following comparisons. 

Within the INDO/1 model Method A4 gives eigenvalues that correlate well 
with experimental XPS (/~ = 0.96), although differences (shifts) are exaggerated. 
It is remarkable that eigenvalues estimated for oxygen atoms by INDO compare 
better with XPS [Ro(A4)=0.98, Ro(B6 ) =0.90-] than they do with the corre- 
sponding ab-initio eigenvalues [Ro(A4)=0.67, Ro (B 6) = 0.83 ]. The oxygen 
atoms from INDO studies are found to be 0.1-0.2 electrons richer than in the 
corresponding ab-initio calculations. Perhaps the semi-empirical fitting of param- 
eters corrects for difficiencies in the minimal basis set ab-initio model. 

Method A4 is the charge potential model of Siegbahn and co-workers [-2, 3], 
but the Fock-Dirac density is deorthogonalized, and Mulliken charges are used. 
It is not consistent with the philosophy behind the INDO model per se. The method 
showing the greatest promise utilizing the resultant LTO density directly is B 6, 
the charge potential model utilizing "L6wdin" charges. The fit here, however, is 
relatively poorer (/~ = 0.94) than that for A4. 

The eigenvalues estimated from EH or IEH do not show much promise of 
yielding core ionization energies for electrons associated with either carbon or 
nitrogen. The best overall method is A 1 with R -- 0.88. Interestingly enough, the 
EH model that calculates the largest net charges is one of the more successful 
theories for electronegative oxygen even when the aldehydes found troublesome 
with other models (A 1 and A3, R o = 0.92). 

For AAMOM methods B2 and B4 appear best (R ~0.96). The oxygen atom 
is again not well treated. 

Table 6 summarizes our comparison between estimated and observed ioniza- 
tion shifts for methods with predictive promise. Although differences of less 
than ~ 1 eV between ionization potentials for different molecules cannot be 
assigned with confidence, the order of intra-molecular ionization processes 
appears distinguished when they are separated by ~0.3 eV (see also, Table 5). 

We conclude that minimum basis set ab-initio eigenvalues, and those obtained 
from INDO or AAMOM, can be used to estimate ionization energies from inner 
shell eigenvalues for orbitals localized on carbon or nitrogen. For orbitals centered 
on oxygen, the AAMOM and INDO models with semi-empirical atomic param- 
eters show a somewhat greater power of predicting ionization energies than the 
corresponding minimum basis set ab-initio calculations. Since the EH model 
with the largest charge build up shows the greatest success when applied to 
oxygen, the lack of electron correlation and a sufficient basis set to accommodate 
more charge may be important 3. 

3 Schwartz et al., Ref. [11], use CNDO with some degree of success for fluorine shifts, where the 
lack of correlation and an adequate atomic basis should have an even larger effect in damaging the 
quality of the wavefunction. The range of experimental values they studied, though, is not large (four 
molecules with 1.6 eV range). 
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4.2. Discussion 

Koopmans '  Approximat ion is often referred to as a "sudden approximation" - 
the removal of an electron with no time for the resulting ion to relax and realize 
its '~ state. Newton [-27] has shown that the negative of these eigenvalues, 
5, will usually provide upper bounds for ionized states, implying that ~ will be 
greater than the values obtained by calculating the energy of the ion itself and 
subtracting. The latter process, representing complete relaxation, when given 
greater variational freedom, appears to give satisfactory numerical agreement 
with experiment [-28-30] even when both calculations are of the Hart ree-Fock 
type. The implication is that correlation effects nearly cancel, and relativistic 
corrections now account for the small discrepancy between "A E" and the observed 
ionization processes 4. 

The last row of Table 2 demonstates the difference between Koopmans '  
approximation and the ionization potentials measured from XPS, or relaxation 
energy, A, realized by XPS for first row ions. The relaxation energy is large, and 
unless we assume that this energy is principally a function of a tom type, or, at 
worst, monotonically dependent on ionization energy, itself (Als g - 0 . 0 2 3 8 7 e l s  
+ 0.58702 a.u. is a fairly accurate expression), eigenvalues might not provide an 
accurate guide for the experimental assignments 5 

Noting, however, that the fast moving remaining core electron circles the 
nucleus several times while the ejected electron is still under the influence of 
the atom, and the slower valence electrons have not, it is reasonable to assume 
that most of the relaxation energy is associated with the valence shell contrac- 
tion caused by a less screened nucleus, and a spin hole. As details of the valence 
shell are a complex function of the molecule, the failure of Koopman ' s  approxi- 
mation might be nearly as common as it is for valence shell ionization processes. 
Koopmans '  approximation might thus be an unreliable procedure in assigning 
near lying lines of an ionization spectrum. 

Even accepting for the moment  that eigenvalues can be used to assign the 
relative lines of an XPS experiment, a question that still remains concerns the 
quality of the calculation. Calculations near the Hartree-Fock limit would seem 
best for both inter- and intra-molecule comparisons. Minimum basis set calcula- 
tions, however, might be unreliable. One might expect the eigenvalues from 
similar calculations on different molecules to reflect trends, but the quality of a 
wavefunction is not only a function of the truncated basis, but also of the molecule; 
that is, a minimum basis set calculation will better describe one molecule than 
another. In a similar fashion calculations fa r  from Hartree-Fock accuracy might 
treat one part  of a molecule more precisely than another. This might be manifest 
in a poor  prediction of bond lengths and other "local" properties in the region 
of the molecule less accurately treated. This would also lead to an eigenvalue 

4 Koopmans' approximation and the A SCF procedure are reasonably well founded for valence 
ionized states. For core ionized states the proximity of excited hole states and continua opens both of 
these procedures to questioning. The numerical evidence, however, suggests both ideas are reasonably 
sound even in core ionized states, and probably reflect the soundness of the shell structure model 
[27, 28]. 

s Such a monotonic dependence of relaxation on ionization energy has been recognized for 
valence shell processes; see, for example, Ref. [31]. 
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ordering in poor agreement with ionization experiment. Nevertheless, it is 
generally assumed that intra-molecular comparisons can be made with such 
calculations, even when inter-molecular comparisons cannot. We also have 
favoured those methods which reproduce intra-molecular spectra at the expense 
of those more accurately reproducing inter-molecular shifts, should there be a 
conflict. We do this not on theoretical grounds, but because intra-molecular 
assignments are experimentally more interesting. 

We have found that the eigenvalues for core orbitals centered on carbon and 
nitrogen in general correlate well with inner-shell ionization energies. This is 
especially so for calculations of "double ~" or better quality. For oxygen the 
correlation is poorer. Minimum basis set calculations that are acceptable in 
reproducing most trends in molecules containing carbon and nitrogen are poorer 
for the more electronegative elements where the number of electrons per available 
orbital is high (less variational freedom), and where electron correlation may be 
important. Minimum basis set calculations for molecules containing oxygen and 
fluorine are noted for yielding bond lengths and force constants in much poorer 
agreement with experiment than similar calculations containing the other atoms 
of the first row [32]. 

Finally, we note that the eigenvalues we calculate are not insensitive to the 
input geometry assumed. Most sensitive of all to geometry are the oxygens of 
this study. For example, with AAMOM and assuming gas phase coordinates 
for the carboxylic acids of this study (R(C=O)=1.24,~, R(C-O)= 1.40•, 
Ref. [33]) give oxygen eigenvalues nearly equal; assuming crystallographic 
coordinates (R(C=O)= 1.24A, R(C~O)= 1.29/~, Ref. [34]) gives eigenvalues 
split by 1.8 eV, in excellent agreement with ionization energies. No reasonable 
charge in geometry, however, can be used to explain the observations on formalde- 
hyde and acetaldehyde. 

5. Conclusions 

Inner shell eigenvalues can be obtained in a relatively straightforward manner 
from the valence shell density matrix of accurate calculations if we assume the 
valence shell basis orthogonal to the neglected core. Much simpler methods 
than our "Best Theory" can be used to extract trends among eigenvalues, but the 
absolute values obtained are in poorer agreement with the model ab-initio results. 
The AAMOM technique, and, to a lesser extent, the INDO model, can be used to 
yield core eigenvalues for orbitals centered on carbon and nitrogen. For oxygen 
the agreement is poorer. We have not been able to find any simple reliable way to 
reproduce core eigenvalues from the Extended Hiickel model, although other 
have done so utilizing curve fitting procedures to calculated molecular parameter 
[111. 

Eigenvalues from ab-initio studies, or those obtained from AAMOM or 
INDO can be used with some confidence in assigning ionization processes from 
orbitals localized on carbons and nitrogens. The oxygens are less accurately 
treated. This may be caused by the relatively poorer treatment that oxygen atoms 
receive in minimum basis set SCF-MO calculations (see text), that does not allow 
charge build-up, by failures in Koopmans' approximation, and by the fact that 
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these eigenvalues seem strongly geometry dependent. This latter disadvantage 
could obviously be turned to interesting advantage could we trust the quality 
(or consistency) of the minimum basis set SCF-MO models examined. 
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